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Abstract 

First  and second moments  of  P(R2) are evaluated for 
models containing correct ly as well as incorrect ly 
placed atoms,  denoted symbolical ly  by {g, f }. Formulas  
are derived, valid for the space groups P1 and P1,  using 
explicitly the set of  observed reflections. Extrapolat ion 
through the introduct ion of an averaged structure 
allows some general conclusions to be drawn concern-  
ing possible strategies used in automated structure 
determinat ions.  A select el imination of da ta  points from 
the R 2 check on the correctness of an atomic position 
severely limits the usefulness of the R 2 criterion. A 

0108-7673/83/060847-07501.50 

check based on Rg has  no better character is t ics  than 
one based on R 2. An R 2 criterion together with a 
zero-atom st ra tegy has better chances  of  being success- 
ful than a r andom-a tom approach.  

1. Introduction 

In au tomated  crystal -s t ructure  determinat ion one needs 
to discr iminate between correct  and incorrect  models 
related to the observed structure. The models to be 
tested can come out of  any  tradi t ional  solution 
procedure.  In order  to describe the various situations 

© 1983 International Union of Crystallography 
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involved we introduce the following nomenclature. A 
tentative model, containing n atoms (n < N, the 
number of atoms in the observed structure) of which g 
atoms are correctly positioned and f atoms are badly 
misplaced, is denoted by {g,f}. Obviously, the purpose 
of a structure determination is to produce a model 
{N,0}. We take the simple case of adding in P1 one new 
trial atom to a model {g,0 }. We then arrive either at the 
situation {g + 1, 0} if the trial atom is correct or at the 
situation {g, 1 } if it is incorrect. 

As discriminator function we use R 2, defined as 

-- q c T ~ E  o, (I.I) 

where E o represents the magnitude of the normalized 
structure factor of the observed N-atom structure. 
Similarly, E c refers to the tentative n-atom model (g + f 
= n), and I"/z describes the fraction of the scattering 
power of the model versus the total structure. For point 
atoms with equal scattering power, 

~2 2 2 = tic~rio = n/N. (1.2) 

The decision whether the new model is {g + 1, 0} or 
{g,1} can be made if we can decide whether the R 2 
value of the new model belongs to the population 
R2{g + 1, 0} or to the population R2{g,1 }. That is to 
say, we have to have knowledge about the probability 
density functions P(R 2) for both situations. The P(R 2)'s 
must be defined over the sample space of all possible 
(partial or complete, correct or incorrect) models of the 
structure under investigation. Even if the P(R2)'s are 
simple Gaussian functions one needs to know their first 
moment (mean value) and their second moment 
(spread). For Gaussian distributed P(R2)'s a 
statistically safe criterion to accept the trial atom as 

• correct would be R 2 (new model) < A, see Fig. 1. 
Because existing formalisms were unable to predict 

meaningful a(R2), a new theory had to be developed. In 

3o1 
a 

3ot 

R2Vatue 

..A . . . . . . . . . . . . .  

LI ,  h 
3~ 

1 

Fig. 1. R 2 ranges for a correct and incorrect trial situation to which 
the R E value of a model should be compared; a represents the 
first moment of P(R 2) for all models {g + l, 0/and tr, the second 
moment, while b is the first moment  of  P(R2) for all models {g,1 } 
and o 2 the second moment. 

parts I and II of this series (Van Havere & Lenstra, 
1983a,b) we gave the fundamentals and evidence for 
correctness of the new theory using the extreme models 
{g,0} and {0,f} in space groups P1 and P i  as 
examples. In this paper we will evaluate the first and 
second moment of P(R 2) for models of the general type 
{g,f}, starting from the equations 

Eo(Ec,Eo) (E4c;Eo) ~ 2 2. 
H H 

(Rz; ~"o) = 1 + ~4  _ 2r]2 

and 

E 4 ~ Eo 4 
H H 

(1.3) 

( 
a2(R2;g°) = I~ rlS(<ES~;E°)-<E4;E°)2) 

- - Z  6 2 6. 411 Eo((Ec,Eo)  
H 

-(E4c;Eo)(EZc;Eo)) 

- f - Z  4 4 4. 4tl Eo((Ec,Eo) 
H 

2 

_ EZE 2 

The notation (R 2;go) means the value of R 2 averaged 
over all models under the constraint of the set No, the 
set of observed E values. The conditional notation of 
the moments, e.g. (E~;Eo), shows unambiguously that 
the available intensity data are taken as a set of fixed 
parameters representing a particular structure under 
investigation. The derivation of the basic intensity 
distribution P(Ec;Eo) necessary to evaluate (1.3) and 
(1.4) is given in {}2. In {}{}3 and 4 the general expression 
is actualized for the space groups P1 and P1 to give a 
priori values of R 2 and a(R2) for model {g,f} specific 
for an actual structure. 

In the last section we will discuss how, through the 
concept of an averaged structure, these results can be 
further generalized, i.e. made independent of a specific 
structure. Then it becomes possible to evaluate the 
potential applicability of Rz-based criteria to the 
screening of a set of MULTAN solutions, e.g. by 
estimating the number of correctly placed atoms. 
Moreover, it allows one to investigate and draw general 
conclusions about the chances various strategies of 
structure determination have on being successful. One 
strategy starts from a complete but possibly incorrect 
model - i.e. the situation {0,N} in the most extreme 
case - and tries by somehow rearranging the atoms via 
situations {g,f} to arrive at the wanted situation {N,0}. 
Another approach starts from an incomplete but 
correct model - i.e. the situation {0,0} in the most 
extreme case - and tries by somehow finding new 
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atoms via situations {g,0} also to arrive at {N,0}. The 
latter strategy, called the zero-atom or additive 
approach, together with the R 2 criterion, will be shown 
to have the better chances. Finally, we look closer into 
the zero-atom approach by evaluating the chances of 
finding new atoms as a function of the number of 
reflections in the data set. 

2. General expression for the basic intensity 
distribution 

Let the rigid point-atom structure contain N atoms with 
scattering power 1. The relation between the sets of 
atoms indicated by the subscripts o, e, g and f is 
illustrated in Fig. 2 for the space group P1. 

The value F o is composed of F~ and Fq, the latter 
belonging to some unknown rest structure of size N -  n. 
The structure-factor equation is taken as 

N 

Fo= ~ exp(2n'/Hrfi. (2.1) 
j = l  

The step to normalized structure factors can be made 
by realizing that F deviates from E only by a constant 
factor V ~ .  Equations (1.3) and (1.4) show the need to 
know the distribution function P(E~;Eo) and its 
moments for the situation {g,f}. The distribution 
functions we derived for P1 and P i  (parts I and II) for 
the situations {g,0} are of the type P(Eg;Eo). Thus, a 
more general expression is needed here. 

Since Eg, E~ and E o are interrelated, the basic 
element in our present set-up is the distribution 
P(Eg,Ec,Eo). Let P(Ec;Eo) be the marginal of the 
conditional probability function P(Eg,Ec;Eo) , or 
algebraically 

oo 

P(Ec;Eo) = f P(Eg,Ec;Eo) dE r (2.2) 
0 

lm 

vq 

I IRe 

Fig. 2. Relation between structure factors of an N-atom structure 
(F o) and an n-atom model (Fc), in which g atoms (Fg) are 
correctly andfatoms (F/) are incorrectly placed. 

Using the theorem of Bayes (see Appendix A*) we find 

oo 

P(Ec;E o) = f P(E~;Eg,EolP(Eg;Eo) dEg 
0 

(2.3) 
and 

P(Eg,Ec,E o) = P(Ee;Eg,Eo) P(Eo;E~) P(Eg) 

P(Eg,Ec,E o) = P(Eo;Ec,Eg)P(Ec;Eg)P(Eg). (2.4) 

Since E c differs from Eg only by a set of unrelated 
incorrect atoms we have 

P(eo;ec,Eg) = P(Eo;Eg) (2.5) 

and thus 

P(Ec;Eg) = P(Ec;Eg,Eo). (2.6) 

Substitution of this result in (2.3) gives 

P(Ec;Eo)= ~P(Ec;Eg)P(Eg;Eo)dEg. (2.7) 
0 

The distributions P(Eg;Eo) are known (parts I and II), 
while P(Ec;Eg ) for the space groups P1 and P1 can be 
found in Srinivasan & Parthasarathy's (1976) 
handbook on crystallographic statistics. 

3. Space group Pl 

In this section we will summarize the results for <R2) 
and a(R2) for models {g,f} of a specific structure in the 
space group P1. The actual derivation of the equations 
is presented in Appendix B.* For R2: 

(R2;~o) = E4o~q{~a~gao -- 2-~o + 

+ ~  E2 r/--~ r/o 2 

+ Y 2[  r/~ -- 
r]4\2)/ 

and for a(R2): 

°2(R2;ffo) = {~Eo6( 8 r/lZr/g'2- 16 rig a_r/o 8 + 8  r/g4 ]~] 

* Appendices A, B and C have been deposited with the British 
Library Lending Division as Supplementary Publication No. SUP 
38805 (9 pp.). Copies may be obtained through The Executive 
Secretary, International Union of Crystallography, 5 Abbey 
Square, Chester CH1 2HU, England. 
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+ZEo 4 2-LX- 4 8 - -  + 4 
- r/o r/04 

xt,  \~o ~ ¢: +ZEo ~ 0 ~ - 1  

( ~ ¢ t  ~ X 
~o ~ ~: 

(--~2 4 )4}/{~ )2 
+ ~H 20 r/g E 4 . (3.2) 

V1o r/4 
For the normalized residual function R~ (see part I, §§ 
2.3 and 4.3) we find 

( +'t 
+ 

+ 

. r/or/~: )I. 
and 

6 6 r/or/c 

×(l-  ~'4/~ 
r/or/~} 

- - -  1 6 - - ~  + 8 

+~E04(52 r/~ _ 4 8  ~ +4 )  
r/'o ,14 r/o ~ r/~ 

r/o r/~ 

+5- 'e  ~_ 0 , 1 4 - 1 6  
r/o ~ r/~ r/o r/c ] 

(1 r / ~ ) 4 } / { ~  H }2 + Y  20 - E4o (3.4) 
H 

4. Space  group P i  

Here we summarize the results for (R2) and o(R 2) for 
models {g,f} of a specific structure in the space group 
Pi .  The actual derivation of the formulae is presented 
in Appendix C.* (R2) is given by 

( R z ; g'o ) = { ~ E 04 { r/Sg - 2 r/08 ~ + 

n \ r/o 2 ~ E 4 (4.1) 

* Appendices A, B and C have been deposited. See earlier 
footnote. 

and a(R 2) by 

aZ(R2;~o)= Eo 6 6 ~ - 3 2  + 16 
r/o 

\r/o ~ r/o 4/ 

+ ~n E4 Q68 r/--~g8 144 * ) r / o 8 -  --~o + 8 

x \r/o 2 -- r/04J + ~n E2° 84--~04--48 

× t~ ¢t 3 
~o ~ -To4: 

+ ~ 9 6 (  r/~ -~o )4}/{~H 4} 2 • E . (4.2)  
. r/o 2 

5. D i s c u s s i o n  and conc lus ions  

In the preceding sections we derived expressions to 
predict a priori values of (R2) and a(R2) tailored to 
the structure at hand. However, generally useful 
insight, i.e. independent of a specific structure, into the 
behaviour of (R2) and a(R 2) requires an extra 
averaging over all structures, that is knowledge of 
((R2))r o and (a(R2))rO. As discussed in part I, §§ 1 and 
4.1 these quantities can be approximated by replacing 
the explicit summations over the data set g"o by 
distribution averages. Thus ynEno are replaced by 
~g'(E~)ro, where ~ represents the number of reflec- 
tions and the (E~,)rO are evaluated by averaging the 
space-group-dependent structure-factor equations with 
respect to the atomic coordinates. In doing so one 
introduces an average structure of size N. The 
behaviour of (R2) and o(R2) for a specific structure 
compared t o  ((R2))ro and ( ~ 7 ( R 2 ) ) r  o for the averaged 
structure are sufficiently close to allow generally useful 
conclusions. 

Table 1. Comparison of theoretical values (R2) and 
a(R:) for an averaged structure with experimental 
results (Petit & Lenstra, 1982) fora lO0-atom structure 

with 2000 reflections 

Situation (R2(exp)) (R2(th)) a(exp) a(th) 

Space group P 1 
{50, 50} 0.750 0.750 0.040 0-031 
{30, 30} 0.667 0.670 0.018 0.016 
{60, 0} 0.399 0.400 0.011 0.012 
{0, 60} 0.755 0.760 0.017 0.016 

Space group P[ 
{50, 50} 1.000 1.000 0.060 0.051 
{30, 30} 0.840 0.840 0.020 0-025 
{60, 0} 0.482 0.480 0-017 0.019 
10, 60 } 0.960 0.960 0-020 0.024 
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Fig. 3 shows the R 2 surface and Fig. 4 the o ( R 2 )  
surface for such a generalized average structure in the 
space group P1, as functions of the fractions r/~/r/o 2 and 
~/r/~. For example, the section parallel to the r/~/r/o 2 axis 
at r/g2/r/~ = 0 gives the generalized paths of R2 or a(R 2) 
for situations {0,n} with n varying from zero to N. A 

2 2 similar section at rig~rio = 1.0 gives these paths for 
situations {n,0} (see Figs. 3 and 4 of part I for 
comparison). Finally, sections parallel to the rlz/rl~ axis 
at q~/rlZo = 1.0 give the variation o f R  z and a(R2) going 
from situations {0,N} to {N,0} via {g , f }  while g + f =  
N. 

Table 1 shows that the theoretical values generated 
in this way fit rather well to experimental values 
obtained by Petit & Lenstra (1982). The agreement is 
very satisfactory if one takes into account that the 
theoretical values are for an average structure, not 
using the data set for the actual structure at hand. 

Turning to the applications of the residuals, one 
could possibly see their use in the screening of a set of 
M U L T A N  solutions. This would require the ability to 
determine r/g z and r/~ for a particular set of peaks. Fig. 5 
gives (R2) values and their 30 ranges as a function of 

and r/~ for complete models: 

r/gz + r/} : N. (5.1) 

\ 

Fig. 3. (R2) for models of the type {g,f} for averaged structures in 
the space group P1. 

~'(R2),~ 

When about 2000 reflections are taken in the R z 
calculations, reasonably good estimates of the percen- 
tage of false atomic positions can be obtained, provided 
the solution already contains >75% correctly placed 
atoms. 

To transfer this result to structures of different sizes 
it is essential to realize that an increase in the size of the 
structure, e.g. from ten to 100 atoms, will reduce the 
change in (R2) per added atom ten times, while the a 
values stay nearly constant, because they depend only 
on the fraction of the atoms placed and not on the 
absolute size of the structure. Thus to get near 
equivalent data sets one must have, because o(R 2) is 
inversely proportional to ~ a 100-fold increase in 
the size of the data set. Note that the quality of the 
estimates cannot be improved by replacing R 2 by R~, 
because in the limit of a complete model these 
indicators are identical. 

The consequences of our present knowledge can 
further be pursued to investigate the chances two 
extreme procedures have to bring a structure determi- 
nation to a successful end. 

The first strategy, advocated by Lenstra (1974), 
j73 starts from a zero-atom model. Atoms are added to the 

asymmetric unit, one at a time, such that via the 
situation {g,0} one finally arrives at the complete, 

R 2 

1.0 . . . . . .  . " - - - -  

o ~I~ o.s ~ - - - -  

1.0 ~ " ~ f f N ~ /  

Fig. 4. or(R2) for models of the type {g,f} for averaged structures Fig. 5. (R2) and 3a(R~) ranges for complete models (see text); 
in the space group P1. ~,"is the number of reflections in the data Solid lines give the 30 ranges while the dashed lines give the 
set. average R 2 values. The space group is P1. 
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correct solution IN,0}. Suppose we can start from the 
situation {g,0 }, add one atom and want to monitor the 
process by the R 2 criterion. We must be able to 
discriminate a wrong move ending in {g,1} from a 
correct move ending in {g + 1, 0}. As a measure of the 
resolving power of the discriminator function we take 
the quantity S, defined as 

(R2{g,1})- - (R2{g + 1,0}) 
S ( g ) =  : (s.2) 

3[a(R2{g,1})+ a(R2{g + 1,0})1 

The second strategy, proposed by Booth (1947, 
1949), starts from a random but complete model, i.e. in 
general from the situation {0,N}. By somehow rear- 
ranging the atoms one hopes via intermediate situations 
{g, f}  to arrive at IN,0}. Suppose we have a way of 
moving only false atoms, leaving correct atoms at their 
positions as soon as they are found. If we can now start 
from the situation {g,f},  move one false atom and 
monitor the process by the R2 criterion, we must be 
able to discriminate a wrong move ending in {g,f} from 
a correct move ending in {g + 1, f -  1}. The above 
definition of S can be applied to both strategies and 
shows that for S > 1 a perfect discrimination is 
possible between wrong and correct ending moves. 
Obviously the lower the g value for which S(g) > 1, the 
better solution strategy and R 2 criterion fit together and 
the better chances we have that the strategy will bring 
an automated structure determination to a successful 
end. 

Table 2 summarizes the S(g) values for the two 
strategies applied to an average structure in P1. 

Table 2. S(g) values for an average structure in P1 
with ten equal atoms and 2000 reflections 

Zero-atom strategy 

Start 

{1,0 
{2,0 
{3,0 
{4,0 
I5,0 
I6,0 
I7,0 
{8,01 
I9,01 

End 
Wrong Correct S(R2) S(R~) 

{1, I} {2,0} 0.805 0.712 
{2, 1} {3,0} 0.912 0.865 
{3, I} {4,0} 1.017 1.013 
{4, 1} {5,0} 1.161 1.194 
{5, 1} {6, 0} 1.376 1-439 
{6, 1} {7, 0} 1.724 1.803 
{7, 1} {8,0} 2-341 2.413 
{8, 1} {9, 0} 3-634 3.649 
{9, 1} { 10,0} 7,487 7.487 

Random-model strategy 
End 

Start Wrong Correct 

{1,9} {1,9} {2,8} 
12,8} {2,8} {3,7 
{3,7} {3,7} {4,6 
{4,6} {4,6} {5,5 
{5,5} {5,5} {6,4 
{6,4} {6,4} {7,3 
{7,3} {7,3} {8,2 
{8,2} {8,2} {9, 1 
{9, i} {9, l} { lO, O} 

s(e2) 

o.131 
0.226 
0.332 
0.460 
0-629 
0-881 
1.319 
2.332 
7.487 

Contrary to Wilson's (1977) opinion, the zero-atom 
strategy in combination with R 2 seems to have the 
better chance of being successful. Provided sufficient 
data points are available the zero-atom strategy may 
automatically lead to the correct structure if about 25 % 
of the atoms are already properly placed. On the other 
hand, chances are dim that the random-model strategy 
will automatically give the correct structure unless 
more than 65% of the atoms in the starting model are 
correct. It is of interest to note, Table 2, that when we 
base the S values on the R~ criterion the turning points 
at which S (g) > 1 do not change. 

Low S(g) values (< 1) indicate that the route to the 
end of the determination is endangered, but do not 
necessarily predict a fatal outcome. In the zero-atom 
strategy the introduction of a false atom at any stage is 
fatal, but the rejection of a correct one is merely 
unfortunate, since it may become acceptable at some 
later stage. The process continues in the correct 
direction as long as we can find one more atom that is 
correct. It would be of value to have information about 
the possibilities of finding such an atom amongst the 
N - g atoms at every stage {g,0 }. The situation may be 
analyzed from Fig. 6. Curve F represents the distri- 
bution P(R 2) for the fatal ending {g,1 } and curve G the 
distribution P(R 2) for the correct situation {g + 1, 0 }. 
The area under F to the left of R2(C) gives the chance 
of a type I error, the addition of a fatal incorrect atom. 
The area under G to the right of R 2 (C) gives the chance 
of a type II error, the rejection of a correct atom. We 
take F and G as Gaussian (part I) and put R2(C) at a 
distance 3a(R2{g,1 }) away from the average R2{g,1 }. 
Thus the chance of a fatal error becomes negligible 
(<0.3%).  We can now calculate the area under G to 
the left of R2(C) as the chance to find a correct atom 
amongst the N - g candidates. 

Table 3 gives the results for a ten-atom structure 
when 1000 or 100 reflections are used in the data set 
from which the criterion is calculated. 

P(R 2) 

R2 
R~(C) 

Fig. 6. Distribution P(R 2) for the situation {5,0}, curve G, and of 
P(R2) for the situation {4,1 }, curve F. The structure contains ten 
atoms, space group PI. 100 reflections were used. 
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Table 3. Probabil i ty o f  f inding a correct atom at 
various stages o f  the determination in the zero-atom 

strategy (see text), with two data sets 

Start P (%) p (%) 
situation 1000 reflections 100 reflections 

{I,0} 72.2 5.6 
{2,0} 82.8 5.4 
{3,0} 90.6 5.1 
{4,0} 97.0 5.2 
{5,0} 99-7 6.2 
{6,0} 99.9 9.2 
{7, 0} ~ 100.0 21.2 
{8, 0} ~ 100.0 83.7 
{9, 0} ~ I00.0 - 100.0 

measuring errors in the data set and the influence of 
small misplacements in otherwise correctly placed 
atoms is left out of the present theory. This will be the 
subject of further investigations. 

As a final conclusion one can state that a successful 
application of R 2 to the analysis of M U L T A N  maps 
seems improbable, particularly if translation problems 
are present. However, an iterative automated pro- 
cedure, taking as input peaks from a heavy-atom 
Fourier or from a D I R D I F  Fourier (Beurskens & 
Noordik, 1972), seems well within the possibilities of 
the discriminating power of the residual functions. 

For large data sets we have a relatively good (here 
about 70%) chance of finding an additional correct 
atom right from the start. Under the unfavourable 
conditions of a small data set, say 100 reflections for 
ten atoms, automation becomes almost impossible. 

Since in an automated structure determination many 
R E checks will be made and the computing time per 
check increases with the number of reflections involved 
in the R E calculations, one is tempted to limit the 
number of data points per test. Unfortunately, the 
results of Table 3 confirm and extend a previous 
conclusion (Petit & Lenstra, 1982) that in this way one 
can only save computer time if one is willing to 
decrease one's chance to find new atoms. 

At this point it seems appropriate to make some 
remarks against an over-optimistic transfer of our 
conclusions to experimental situations. An incorrectly 
placed atom in our analysis is completely and ran- 
domly misplaced. Sometimes, however, tentative 
atomic positions are generated (e.g. by M U L T A N )  
which exhibit systematic errors, for instance, a 
geometrically correct fragment at an incorrect location. 
This makes the magnitudes of E o and E c interrelated, 
which means an invalidation of our premise for 
handling incorrect atomic sites. Also, the influence of 
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